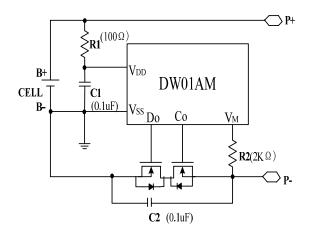

General Description

The DW01AM are protectors for lithium-ion and lithium polymer rechargeable battery with high accuracy voltage detection. They can be used for protecting single cell lithium-ion or/and lithium polymer battery packs from overcharge, over-discharge, excess current and short circuit. These ICs have suitable protection delay functions and low power consumption property.


Applications

Features

- Overcharge Threshold
 - 4.300V
 - Accuracy $\pm 50 \text{mV} (25^{\circ}\text{C})$
- Over-discharge Threshold
 - Typ. 2.40V
 - Accuracy ±100mV
- Excess Current Protection Threshold
 - Typ. $0.150V @ V_{DD} = 3.30V$
 - Accuracy ±30mV
- Short Circuit Protection Threshold
 - Typ. 1.35V @ V_{DD} = 3.30V
 - Accuracy ±35mV
- Low Supply Current
 - Typ. 3.0uA @ V_{DD} = 3.9V (Standard working)
 - Typ. 1.6uA @ V_{DD} = 2.0V (With auto wake up)
- Output Delay of Overcharge
 - Typ.80ms @ V_{DD} = 4.4V
- Output Delay of Over-discharge
 - Typ. 40ms @ V_{DD} = 2.0V
- Small Package
 - SOT-23-6L

Typical Application Circuits

Notes

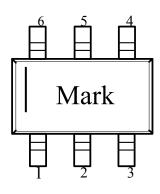
 R_1 and C_1 are to stabilize the supply voltage of the DW01AM $R_1\,C_1$ is hence regarded as the time constant for V_{DD} pin. C_2 is to stabilize the voltage of V_M pin. R_1 and R_2 can also be a part of current limit circuit for the DW01AM Recommended values of these elements are as follows:

- R₁ < 1kΩ. A larger value of R1 results in higher detection voltage, introducing errors.
- $R_2 < 2.5 k\Omega$. A larger value of R_2 possibly prevents resetting from over-discharge even with a charger.
- \bullet $R_1 + R_2 > 1 k \Omega.$ Smaller values may lead to power consumption over the maximum dissipation rating of the DW01AM
- The above diagram and parameters can't insure the circuit work well, please choose the suitable parameters through test.

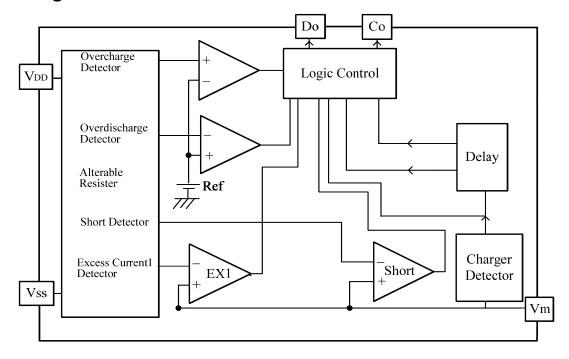
Page 1 of 8

Product List

Table 1. (@ 25℃)


Type Number	Overcharge threshold (Vdet1)	Overcharge release hysteresis voltage (Vhc)	Overdischarge threshold (Vdet2)	Overdischarge release hysteresis voltage (Vhd)	Discharge Overcurrent threshold (Vdet3)	Auto wake up function	Mark (ST)
DW01AM	4.300V	0.200V	2.400V	0.600V	0.150V	Yes	1

Pin Description


Table 2. SOT-23-6L

Pin	Symbol	Description					
1	Do	Overdischarge detection, CMOS output					
2	V_{M}	Connected to charger's negative pin					
3	Co	Overcharge detection, CMOS output					
4	NC	No connection					
5	V_{DD}	Power supply					
6	V _{SS}	Ground					

SOT-23-6 (Top Side)

Block Diagram

Datasheet Page 2 of 8

Function Description

Normal Condition:

VDD is between the Over-discharge Detection Threshold (Vdet2) and Overcharge Detection Threshold (Vdet1) and the VM pad voltage is between Charger Detection Voltage (Vcha) and the Excess Current 1 Threshold Voltage (Vdet3), therefore the outputs of $D_{\rm O}$ pad and $C_{\rm O}$ pad are high and the MOSFETs of charge and discharge are all on. Charging and discharging can be carried out freely.

Overcharge Condition:

When V_{DD} increases and passes Vdet1 during charging under the normal condition, the output of Co pad will change from high to low after Overcharge Detection Delay Time (Tvdet1), turning off the charging control FET.

If, within Tvdet1, V_{DD} becomes lower than Vdet1 and stays for duration shorter than Overcharge Reset Delay Time (Treset) before rising up over Vdet1 again, this type of instantaneous falling of V_{DD} is ignored. Otherwise, if the time V_{DD} stays lower than Vdet1 is longer than Treset, the timing related to Tvdet1 shall be reset.

Over-discharge Condition:

While discharging, after VDD lowers below Over-discharge Detection Threshold (Vdet2), Do pad goes low after Over-discharge Detection Delay Time (Tvdet2). The Do pad would switch off the discharging control FET and stop discharging.

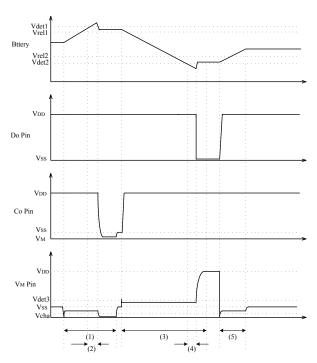
Power-Down State:

When IC enter over-discharge state, all the detection circuity And timing generation turn off, and the quiescent current reduce to 1.6 uA(VDD = 2.0V). At the same time the Vm is pull-up to VDD through an internal resistor.

Excess Current 1 Protection:

During discharging, the current varies with load, and V_M increases with the rise of the discharging current. Once V_M rises up to the Excess Current 1 Threshold Voltage (Vdet3) or higher and stays longer than the Excess Current 1 Delay Time (Tvdet3), Do pad switches to low, turning off the discharging control FET. After that excess current state is removed, i.e. $V_M < Vdet3$, and the circuit recovers to normal condition.

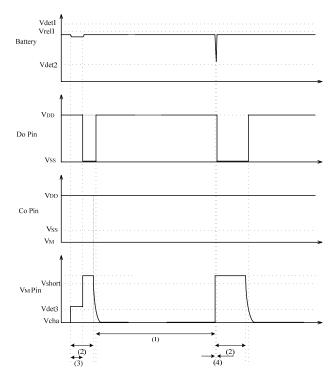
Short Circuit Protection:


This function has the same principle as the excess current protection. But, the delay time Tshort is far shorter than Tvdet3, and the threshold Vshort is far higher than Vdet3. When the circuit is shorted, V_M increases rapidly. Once $V_M \ge V$ short, Do pad switches to low, turning off the discharging control FET.

After the short circuit state is removed, i.e. $V_{\rm M}{<\!\!<\!\!}{\sf Vdet3}$, the circuit recovers to the normal condition. The short circuit peak current is related to Vshort and the ON resistance of the two FETs in series. Output types of Co and Do are CMOS level.

Datasheet Page 3 of 8

Operation Timing Chart (1)


Overcharge/Over-discharge Detection

- (1) Charger connected
- (2) Overcharge Detection Delay Time (Tvdet1)
- (3) Load connected
- (4) Over-discharge Detection Delay Time (Tvdet2)
- (5) Normal charging

Operation Timing Chart (2)

Excess Current and Short Protection

- (1) Normal condition
- (2) Load connection
- (3) Excess Current 1 Delay Time (Tvdet3)
- (4) Short Circuit Delay Time (Tshort)

Datasheet Page 4 of 8

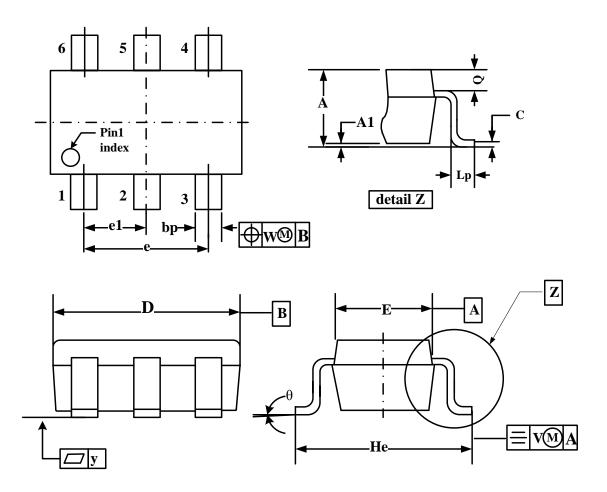
Electrical Characteristics

(T_{OPT}=25 $^{\circ}\mathrm{C}$ unless otherwise specified)

Symbol	Item	Conditions	Min.	TYP.	Max.	Unit			
DETECTION	I VOLTAGE AND DELAY TIME					·			
Vdet1	Overcharge Threshold	VCC=3.9V	4.25	4.30	4.35	٧			
Vrel1	Release Voltage For Overcharge Detection		4.05	4.10	4.15	V			
Vdet2	Overdischarge Threshold		2.30	2.40	2.50	V			
Vrel2	Release Voltage For Over-discharge Detection		2.90	3.00	3.10	V			
Vdet3	Excess Current 1 Threshold	V _{DD} = 3.30V	0.12	0.15	0.18	V			
Vshort	Short Protection Voltage	V _{DD} = 3.30V	1.00	1.35	1.70	V			
Tvdet1	Output Delay Of Overcharge	V _{DD} = 4.0V→4.4V	_	80	200	ms			
Tvdet2	Output Delay Of Over-discharge	V _{DD} = 3.0→2.0V	_	40	100	ms			
Tvdet3	Output Delay Of Excess Current 1	V _{DD} = 3.30V	_	10	20	ms			
Tshort	Output Delay Of Short Protection	V _{DD} = 3.30V	_	5	50	us			
OUTPUT VC	DLTAGE AND V _M INTERNAL RESISTAN	CE							
Vc _{OL}	CO Pin L Voltage I _{OL} =50uA, V _{DD} =4.4V 0.15 0.20 0.25								
Vсон	CO Pin H Voltage	I _{OH} =-50uA, V _{DD} =3.9V	3.75	3.70	3.65	V			
V_{DOL}	DO Pin L Voltage	I _{OL} =50uA, V _{DD} =2.0V	0.05	0.07	0.09	V			
V_{DOH}	DO Pin H Voltage	I _{OH} =-50uA, V _{DD} =3.9V	3.85	3.83	3.81	V			
R_{VMD}	Resistance between V _M and V _{DD}	V _{DD} =2.0V, V _M =0V	150	300	600	kΩ			
R _{VMS}	Resistance between V _M and V _{SS}	V _{DD} =3.3V, V _M =1V	60	130	260	kΩ			
OPERRATIO	ON VOLTAGE AND CURRENT CONSUM	MPTION				•			
V_{DD}	Operating Input Voltage	V _{DD} -Vss	1.6	V_{DD}	8.0	V			
V_{M}	Operating Input Voltage	V_{DD} - V_{M}	1.5		18	V			
I _{DD}	Supply Current	$V_{DD} = 3.9V, V_{M} = 0V$		3.0	6.0	uA			
I _{STANDBY}	Standby Current (for products with Auto wake up)	V _{DD} = 2.0V		1.6	3.0	uA			

Datasheet Page 5 of 8

Absolute Maximum Ratings (Ta= 25 $^{\circ}$ C V_{SS} =0 V)

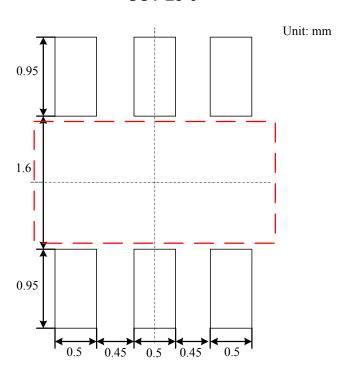

Symbol	Item	Ratings	Unit	
V_{DD}	Supply Voltage	-0.3 to 8	V	
V_{M}	V _M Pin Input Voltage	V _{DD} -18 to V _{DD} +0.3	V	
Vco	Co Pin Output Voltage	V _{DD} -18 to V _{DD} +0.3	V	
V_{DO}	Do Pin Output Voltage	Vss-0.3 to V _{DD} +0.3	V	
Pd	Power Dissipation	150	mW	
Topt	Operating Temperature Range	-30 to 80	$^{\circ}$ C	
Tstg	Storage Temperature Range	-55 to 125	$^{\circ}$	

Caution: These values must not be exceeded under any conditions.

Datasheet Page 6 of 8

Package Outline

SOT-23-6L


Dimensions (mm)

Α	A1	bp	С	D	Е	е	e1	He	Lp	Q	٧	W	у	θ
1.3	0.15	0.50	0.20	3.1	1.7	1.9	0.95	3.0	0.6	0.33	0.0	2	0.1	0°
1.0	0.03	0.35	0.10	2.7	1.3			2.5	0.2	0.23	0.2	0.2		10°

Datasheet Page 7 of 8

PCB Layout

Datasheet Page 8 of 8